4,686 research outputs found

    A note on the growth of Betti numbers and ranks of 3-manifold groups

    Full text link
    Let N be an irreducible, compact 3-manifold with empty or toroidal boundary which is not a closed graph manifold. Using recent work of Agol, Kahn-Markovic and Przytycki-Wise we will show that pi_1(N) admits a cofinal filtration with `fast' growth of Betti numbers as well as a cofinal filtration of pi_1(N) with `slow' growth of ranks.Comment: 10 pages, updated reference

    Temperature dependence of magnetic resonance probes for use as embedded sensors in constructed wetlands

    Get PDF
    Constructed wetlands are now accepted as an environmentally friendly means of wastewater treatment however, their effectiveness can be limited by excessive clogging of the pores within the gravel matrix, making this an important parameter to monitor. It has previously been shown that the clog state can be characterised using magnetic resonance (MR) relaxation parameters with permanent magnet based sensors. One challenge with taking MR measurements over a time scale on the order of years is that seasonal temperature fluctuations will alter both the way that the sensor operates as well as the relaxation times recorded. Without an understanding of how the sensor will behave under different temperature conditions, meaningful information about the clog state cannot be successfully extracted from a wetland. This work reports the effect of temperature on a permanent magnet based MR sensor to determine if the received signal intensity is significantly compromised as a result of large temperature changes, and whether meaningful relaxation data can be extracted over the temperature range of interest. To do this, the central magnetic field of the sensor was monitored as a function of temperature, showing an expected linear relationship. Signal intensity was measured over a range of temperatures (5 °C to 44 °C) for which deterioration at high and low temperatures compared to room temperature was observed. The sensor was still operable at the extremes of this range and the reason for the signal loss has been studied and explained. Spin-lattice relaxation time measurements using the sensor at different temperatures have also been taken on a water sample and seem to agree with literature values. Further to this, measurements have been taken in an operational wetland over the course of 203 days and have shown a linear dependence with temperature as would be expected. This work concluded that the sensor can perform the task of measuring the spin-lattice relaxation time over the required temperature range making it suitable for long-term application in constructed wetlands

    Hierarchical spin-orbital polarisation of a giant Rashba system

    Get PDF
    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids, and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarisation. Here, combining polarisation-dependent and resonant angle-resolved photoemission measurements with density-functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a re-interpretation of spin splitting in Rashba-like systems, and opens new possibilities for controlling spin polarisation through the orbital sector.Comment: 11 pages including supplemental figures, accepted for publication at Science Advance

    A Complete Expression Profile of Matrix-Degrading Metalloproteinases in Dupuytren’s Disease

    Get PDF
    Dupuytren’s disease (DD) is a common fibrotic condition of the palmar fascia, leading to deposition of collagen-rich cords and finger contractions. The metzincin superfamily contains key enzymes in the turnover of collagen and other extracellular matrix macromolecules. A number of broad-spectrum matrix metalloproteinase inhibitors, used in cancer clinical trials, caused side effects of DD-like contractures. We tested the hypothesis that changes in the expression of specific metalloproteinases underlie or contribute to the fibrosis and contracture seen in DD. We collected tissue from patients with DD and used normal palmar fascia as a control. We profiled the expression of the entire matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMP), and a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS) gene families in these tissues using real-time reverse-transcription polymerase chain reaction. A number of metalloproteinases and inhibitors are regulated in DD. The expression of 3 key collagenases, MMP1, MMP13, and MMP14 is increased significantly in the DD nodule, as is the expression of the collagen biosynthetic enzyme ADAMTS14. The expression of MMP7, an enzyme with broad substrate specificity, is increased in the DD nodule and remains equally expressed in the DD cord. TIMP1 expression is increased significantly in DD nodule compared with normal palmar fascia. This study measured the expression of all MMP, ADAMTS, and TIMP genes in DD. Contraction and fibrosis may result from: (1) increased collagen biosynthesis mediated by increased ADAMTS-14; (2) an increased level of TIMP-1 blocking MMP-1– and MMP-13–mediated collagenolysis; and (3) contraction enabled by MMP-14–mediated pericellular collagenolysis (and potentially MMP-7), which may escape inhibition by TIMP-1. The complete expression profile will provide a knowledge-based approach to novel therapeutics targeting these genes

    Pressure balance at the magnetopause: Experimental studies

    Full text link
    The pressure balance at the magnetopause is formed by magnetic field and plasma in the magnetosheath, on one side, and inside the magnetosphere, on the other side. In the approach of dipole earth's magnetic field configuration and gas-dynamics solar wind flowing around the magnetosphere, the pressure balance predicts that the magnetopause distance R depends on solar wind dynamic pressure Pd as a power low R ~ Pd^alpha, where the exponent alpha=-1/6. In the real magnetosphere the magnetic filed is contributed by additional sources: Chapman-Ferraro current system, field-aligned currents, tail current, and storm-time ring current. Net contribution of those sources depends on particular magnetospheric region and varies with solar wind conditions and geomagnetic activity. As a result, the parameters of pressure balance, including power index alpha, depend on both the local position at the magnetopause and geomagnetic activity. In addition, the pressure balance can be affected by a non-linear transfer of the solar wind energy to the magnetosheath, especially for quasi-radial regime of the subsolar bow shock formation proper for the interplanetary magnetic field vector aligned with the solar wind plasma flow.Comment: 8 pages, 2 figure
    • …
    corecore